
SWEN 262
Engineering of Software Subsystems

Observer Pattern

Invaders From SpaceTM

1. Invaders from SpaceTM is a game that

challenges the player to fight off waves of

invading aliens using a spaceship.
a. The player uses left and right arrow keys to move their

spaceship in the corresponding direction.
b. They use the spacebar to fire a single shot at the

encroaching aliens.
c. If at any time the player presses the “ESC” key, the

game pauses and they are prompted to quit. Pressing
the “y” key will quit the game. Pressing the “ESC” key
again will unpause.

2. The game should be as responsive as possible,

and so each time the user presses one of the

control keys, the game should immediately

respond in some way.

There are a number of ways that the program
can check for user input. Some are better than
others...

Polling

while(true) {

 try {

 Thread.sleep(INTERVAL);

 } catch(InterruptedException e) {}

 switch(lastKeyPressed()) {

 case LEFT_ARROW:

 moveLeft(); break;

 case RIGHT_ARROW:

 moveRight(); break;

 case SPACE_BAR:

 fire(); break;

 case ESC:

 togglePause(); break;

 case Y:

 checkForQuit(); break;

 }

}

One possible technique is polling.

When using polling, execution is suspended for
some interval, after which the program checks
to see if any significant events have occured.

Once any event(s) have been handled, the
program suspends execution again until the next
interval elapses.

Q: What are the potential drawbacks of this
implementation?

A: What happens if more than one event occurs
between intervals? What if no events occur?

Drawbacks of Polling

While sometimes polling is unavoidable, there are

many drawbacks.

● Missed Events - if the polling interval is too long, it is
possible that more than one event will occur
between intervals.

● Wasted Cycles - if the polling interval is too short,
processing time is wasted when the thread wakes
up to check for events and none have occurred.

● Duplicate Events - it is possible that the same event
may be handled more than once, e.g. a single press
of the left arrow moves the ship 2 or more times.

Let’s take a look at an alternative to polling.

public interface Component {

 void register(KeyListener listener);

 void deregister(KeyListener listener);

 void notify(KeyEvent event);

}

Begin by defining an interface to be
implemented by any observers that should be
notified whenever a key is pressed on the
keyboard.

public interface KeyListener {

 public void keyPressed(KeyEvent event);

}

Create a second interface to be implemented
by any subject on which a key may be pressed
and that should notify any registered observers.

Observing a Subject

In this example, a KeyEvent class is used to
encapsulate the details about the event (e.g.
which key was pressed, how many times, etc.).

Implement a concrete subject so that
interested observers can register to be notified
when an event occurs.

public class PlayArea implements Component {

 private List<KeyListener> listeners =

 new ArrayList<>();

 void register(KeyListener listener) {

 listeners.add(listener);

 }

 void deregister(KeyListener listener) {

 listeners.remove(listener);

 }

 void notify(KeyEvent event) {

 for(KeyListener listener : listeners) {

 listener.notify(event);

 }

 }

}

When an event does occur, e.g. the user
presses a key on the subject, the concrete
subject should iterate over the observers and
notify them.

Implement the Subject Interface

The observers are typically kept in a data
structure such as a list or a set.

The concrete subject should call this method to
notify its observers immediately any time a key
is pressed.

KeyListener listener =

 new PlayerActionHandler();

Component playArea = new PlayArea();

playArea.register(listener);

public class PlayerActionHandler

 implements KeyListener {

 public void keyPressed(KeyEvent event) {

 switch(event.getKeyCode()) {

 case LEFT_ARROW:

 moveLeft(); break;

 case RIGHT_ARROW:

 moveRight(); break;

 // and so on...

 }

 }

}

Implement a concrete observer that includes
the code that should be executed each and
every time a key is pressed.

Finally, create an instance of the concrete
observer and register it with the concrete
subject.

Implement the Observer Interface

The KeyEvent encapsulates the information
about the event (i.e. which key was pressed).
The concrete subject will call this method on
any registered observer exactly once each time
a key is pressed.

The concrete subject will notify the concrete
observer immediately whenever a key is
pressed. No polling needed!

GoF Observer Structure Diagram
Subject

<<interface>>

+ register(observer: Observer)
+ deregister(observer: Observer)
+ notify(event: Event)

for(observer : observers) {
 observer.update(event);
}

Observer
<<interface>>

+ update(event: Event)

ConcreteObserver

+ update(event: Event)

ConcreteSubject

+ register(observer: Observer)
+ deregister(observer: Observer)
+ notify(event: Event)

- observers: List<Observer>

Intent: Define a one-to-many dependency between
objects so that when one object changes state, all its
dependents are notified and updated automatically.

(Behavioral)

*

Diagrams should be drawn with a
professional drawing tool like draw.io
or Lucidchart and saved as an image.

Screenshots are sloppy, lazy, and
look unprofessional.

https://www.draw.io/
https://www.lucidchart.com/

UML Class Diagram

UML Class Diagram

Note that each class has a context
specific name appropriate for the
game.

The pattern stereotypes are
shown in guillemets (<<>>)
beneath the name of any class
that participates in the pattern
implementation.

GoF Pattern Card

Name: Player Action Subsystem GoF Pattern: Observer

Participants

Class Role in Pattern Participant’s Contribution in the context of the
application

Component Subject Defines the interface for any class that can be observed
for key presses. This is most likely to be a GUI
component of some kind, like a panel.

PlayArea ConcreteSubject The GUI component that displays the play area including
space ship, aliens, etc. This component will have focus
during play, and so will generate an event at any time that
the user presses a key while the game is running.

KeyListener Observer The interface for any class that should be notified when
the user presses a key on an observed subject. There
may be several such listeners in the game.

PlayerActionHandler ConcreteObserver Interprets key presses from the player into actions in the
game, i.e. left arrow moves the space ship left, right
arrow moves right, and so on.

Deviations from the standard pattern: None

Requirements being covered: 1a. Ship movement, 1b. Firing weapons, 1c. Pause/quit, 2. Responsive
to player input.

A sequence diagram illustrating the
"quit game" feature described in the
requirements.

Sequence Diagram

Push vs. Pull Notifications

The examples shown here use push notifications.

● The information about the change in the state of
the subject is encapsulated as an event.

● The event is sent to the registered observers.

Alternatively, pull notifications may be used instead.

● The subject notifies the observers that a specific
event has occurred, but does not send the details
about the event to the observers.

● If the observer is interested in the specific type of
event that has occurred, it will request the details
from the subject.

● This is useful if there are many different types of
events that may occur, and individual observers
may only be interested in a subset of the events.

public class ConcreteObserver

 implements Observer {

 private Subject subject;

 public ConcreteObserver(Subject subject) {

 this.subject = subject;

 }

 public void update() {

 State state = subject.getState();

 }

}

In this alternative implementation, the update
method takes no parameters and the concrete
observer needs a reference to the subject.

Observer (Pull Notifications)
Subject

<<interface>>

+ register(observer: Observer)
+ deregister(observer: Observer)
+ getState(): State
+ notify()

for(observer : observers) {
 observer.update();
}

Observer
<<interface>>

+ update()

ConcreteObserver

ConcreteObserver(subject: Subject)
+ update()

ConcreteSubject

+ register(observer: Observer)
+ deregister(observer: Observer)
+ getState(): State
+ notify()

- observers: List<Observer>
- subject: Subject

State state = subject.getState();

In this alternative, the observers are
notified that something changed, but not
the specifics. The intent remains the same.

*

The update() method takes no
parameters...

...and the concrete observer pulls
state from the subject iff the specific
event is of interest.

Observer

There are several consequences to implementing
the observer pattern:
● Abstract coupling is used so that the Concrete

Subject is not coupled with Concrete
Observers (and vice versa).

● Updates a broadcast to any interested
observers.

● Cascading updates may occur if/when one
observer modifies the subject.

Things to Consider
1. How does Observer affect the

overall cohesion in the system?2. The coupling?
3. What other design principles

might observer make better or
worse?

4. When might it not be
appropriate to use Observer?

